Skip to main content

What is an Analytics Translator and Why is the Role Important to Your Organization?

Today, enterprises recognize the critical value of advanced analytics within the organization and they are implementing data democratization initiatives. As these initiatives evolve, new roles emerge in the organization. The newest of these analysis-related roles is the ‘analytics translator‘. As the enterprise considers the relevance of this new role within the business, it is important to understand the responsibilities of an Analytics Translator, and how this role might help the organization to achieve its goals.
What is an Analytics Translator?


The Analytics Translator is an important member of the new analytical team. As organizations encourage data democratization and implement self-serve business intelligence and advanced analytics, business users can leverage machine learning, self-serve data preparation, and predictive analytics for business users to gather, prepare an analyze data. The emerging role of Analytics Translator adds resources to a team that includes IT, data scientists, data architects and others.
Analytics Translators do not have to be analytical specialists or trained professionals. With the right tools, they can easily translate data and analysis without the skills of a highly trained data pro.


Using their knowledge of the business and their area of expertise, translators can help the management team focus on targeted areas like production, distribution, pricing and even cross-functional initiatives.
With self-serve, advanced analytics tools, translators can then identify patterns, trends and opportunities, and problems. This information is then handed off to data scientists and professionals to further clarify and produce crucial reports and data with which management teams can make strategic and operational decisions.
Why is an Analytics Translator Important to Your Organization?
IT resources and data professionals are typically in short supply within an organization and, if the enterprise wishes to increase staff, the cost of these highly skilled professionals can be prohibitive. In the average organization, these resources are usually stretched thin and time is wasted on projects that are:
  • Too complex for business team members
  • Conceived or inappropriate for attention at the data scientist or IT level
  • Comprised of incomplete requirements
  • Required for day-to-day or immediate analysis or data sharing initiatives
  • Tactical or low-level operational in nature

    The time it takes for a data professional or IT professional to review the project and assign a priority, will take them away from more strategic or more critical tasks and, in the process, the business user may miss day-to-day deadlines or information that is critical to them. Perhaps, the data professional may need more information on requirements, which will further delay the project. There are many examples of unnecessary or inappropriate data analysis requests and many instances where a business user with access to analytical tools might be able to do the work themselves. But, there are even more examples of projects or analytical requirements that fall somewhere between the skills of a business user and the skills of a trained data scientist and just as many examples of poorly understood or poorly translated data analysis that sends a business user off in the wrong direction.
    That is where the Analytics Translator comes in. Using her or his knowledge of the industry, the organization, the team and the analytics tools, the translator can play a crucial role in understanding requirements, preparing data and producing and explaining information in a way that is accurate and clear. As this role evolves within your organization, you will find that, by allowing the average business user to work with the Analytics Translator, that business user will become more knowledgeable and skilled in interpreting and understanding data.


    The Ideal Analytics Translator
    When identifying possible candidates to perform the Analytics Translator role, the organization should look for skills that can be nurtured and optimized as an asset.
    • A power user of self-serve BI tools
    • Recognized as an expert in a functional, industry or organizational role
    • Comfortable with building and presenting reports and use cases
    • Works well with technical and management teams
    • Manages projects, milestones and dependencies with ease
    • Able to translate analysis and conclusions into actionable recommendations
    • Comfortable with metrics, measurements and prioritization
    • Acts as a role model for user and team member adoption of new processes and data-driven decisions
    If this role is recognized as important to the organization, most enterprises will structure a logical program to identify and train candidates to ensure uniform skills and performance.
    By combining domain, organizational and industry skills with self-serve analytical tools, the Analytics Translator can help the enterprise to achieve low total cost of ownership (TCO) and rapid return on investment (ROI) for its business intelligence and advanced analytics initiatives and can encourage and nurture data democratization and optimal analytical business results within the organization.

Comments

Popular posts from this blog

Why Do You Need Self-Serve Data Preparation?

Self-Serve Data Preparation Takes the Headache Out of Data Analytics! Self-Serve Data Preparation (aka augmented data preparation) is all about efficiency and the presentation of sophisticated data preparation tools in an easy-to-use environment. The idea behind self-service data preparation is to give the average business user the ability to prepare, use, report on and share data without the assistance of IT staff or analysts, thereby making their jobs easier and making every team member more of an asset to the organization. Business users love  Self-Serve Data Preparation  because they can control data elements, and the volume and timing, perform data preparation and test theories and hypotheses by prototyping on their own. No one likes to be restricted to complex tools or forced to wait for programmers or data scientists. Give your business users access to crucial data and connect them to data sources so they can mash up and integrate data in a single, one-st...

Evaluating Enterprise Data Literacy

 Any organization that aims toward complete digital transformation must move toward Enterprise Data Literacy. So, what exactly is Data Literacy? Gartner defines Data Literacy as: “The ability to read, write and communicate data in context, including an understanding of data sources and constructs, analytical methods and techniques applied – and the ability to describe the use case, application and resulting value.” According to the Gartner Annual Chief Data Officer (CDO) Survey, an absence of Data Literacy is the primary reason behind CDOs’ inadequate performance. To combat this, more and more enterprises are engaging in “competency development in the field of Data Literacy.” In a digital culture, the goal is to make data accessible and available to all employees – not just to data scientists, analysts, or CDOs. Right now, most business executives realize that all employees need to “communicate in a common data language,” but data regulations, and privacy and security policies are ...

BI for Customer Relationship Management

Can Business Intelligence for CRM Help Attract and Retain Customers? Customer service and customer satisfaction are the backbone of customer relationships. In an effort to ensure customer satisfaction and retention, businesses spend a lot of time trying to understand buying behavior, customer expectations for product support, website support and product and service variety, as well as gaps in product and service offerings. If an organization can accurately monitor and measure customer service factors and customer satisfaction, it is easier to resolve issues and capitalize on opportunities and to anticipate customer needs and fill market gaps. The goal is always to attract new customers, retain existing customers and obtain those all important client references. Business Intelligence for CRM  is crucial to business success. Your competitors have already embraced metrics and KPI for customer relationship management to provide objective metrics and understand what tasks an...