Skip to main content

Can Predictive Analytics Provide Accurate Results Without Burdening Users?

If your business is struggling to forecast and predict outcomes and results, your management team is probably considering predictive analytics. The technology research firm Gartner states that “by 2025, 50% of data scientist activities will be automated by artificial intelligence, easing the acute talent shortage.”

For the average team member, the concept of predictive analytics may seem daunting, and if you are a business user whose management team has asked you to embrace and participate in analytics, the addition of predictive analytics to your day-to-day business processes may seem irrelevant, or it may seem to mean you will be expected to work harder or produce more output. But don’t be too quick to assume the worst. 

Let’s take a look at predictive analytics, the benefits of assisted predictive modeling and its importance in the organization, and how intuitive augmented analytics can help business users achieve their goals without requiring advanced training or additional workload. 

What Is Predictive Analytics?
Predictive analytics comprises sophisticated analytical methodologies that allow businesses to predict future outcomes based on historical data. Using these techniques, the organization can predict future events, customer buying behaviors, and business outcomes. Predictive analytics utilizes various techniques, including association, correlation, clustering, regression, classification, forecasting, and other statistical techniques.

Understanding Assisted Predictive Modeling
When a business provides augmented analytics tools for business users, it allows the team to perform predictive analytics daily without the assistance or skills of a data scientist or an IT professional. Assisted predictive modeling provides auto-suggestions and recommendations to guide business users with recommended techniques, selecting the most appropriate techniques for the type and volume of data the user wishes to analyze.

If the business chooses an augmented analytics tool with intuitive predictive modeling features, it allows users to work quickly and receive clear, concise results for decision-making, so user adoption of the tools is more likely, and forecasting and predictions are accurate and timely. All popular predictive modeling techniques are incorporated into the solution, so users have access to the most sophisticated predictive analytics and tools and can use these tools to model and review business use cases and issues. 

The Benefits and Importance of Assisted Predictive Modeling
These tools allow the organization to apply predictive analytics to real use cases to analyze customer churn, target customers, identify cross-selling and product bundling, find and set appropriate price points, forecast where and when to open new locations, when the business will need new suppliers, when equipment will require maintenance, etc.

A comprehensive augmented analytics solution also includes the benefit of integration with R Script so that data scientists can capitalize on expertise and leverage enterprise investments in R open-source platforms, to perform statistical and predictive algorithms and complex analysis to provide the depth of detail and advanced analytics and reporting the organization needs for strategic decision-making.

By providing this type of expanded functionality to the team, the business can enable both data scientists and business users with predictive analytics that will benefit the organization, encourage collaboration and data sharing, and improve data literacy – all without increasing workload or frustrating users and team members. 

Credits: Karthik Patel, CEO, Elegant Micro web services

Comments

Popular posts from this blog

Why Do You Need Self-Serve Data Preparation?

Self-Serve Data Preparation Takes the Headache Out of Data Analytics! Self-Serve Data Preparation (aka augmented data preparation) is all about efficiency and the presentation of sophisticated data preparation tools in an easy-to-use environment. The idea behind self-service data preparation is to give the average business user the ability to prepare, use, report on and share data without the assistance of IT staff or analysts, thereby making their jobs easier and making every team member more of an asset to the organization. Business users love  Self-Serve Data Preparation  because they can control data elements, and the volume and timing, perform data preparation and test theories and hypotheses by prototyping on their own. No one likes to be restricted to complex tools or forced to wait for programmers or data scientists. Give your business users access to crucial data and connect them to data sources so they can mash up and integrate data in a single, one-st...

Evaluating Enterprise Data Literacy

 Any organization that aims toward complete digital transformation must move toward Enterprise Data Literacy. So, what exactly is Data Literacy? Gartner defines Data Literacy as: “The ability to read, write and communicate data in context, including an understanding of data sources and constructs, analytical methods and techniques applied – and the ability to describe the use case, application and resulting value.” According to the Gartner Annual Chief Data Officer (CDO) Survey, an absence of Data Literacy is the primary reason behind CDOs’ inadequate performance. To combat this, more and more enterprises are engaging in “competency development in the field of Data Literacy.” In a digital culture, the goal is to make data accessible and available to all employees – not just to data scientists, analysts, or CDOs. Right now, most business executives realize that all employees need to “communicate in a common data language,” but data regulations, and privacy and security policies are ...

BI for Customer Relationship Management

Can Business Intelligence for CRM Help Attract and Retain Customers? Customer service and customer satisfaction are the backbone of customer relationships. In an effort to ensure customer satisfaction and retention, businesses spend a lot of time trying to understand buying behavior, customer expectations for product support, website support and product and service variety, as well as gaps in product and service offerings. If an organization can accurately monitor and measure customer service factors and customer satisfaction, it is easier to resolve issues and capitalize on opportunities and to anticipate customer needs and fill market gaps. The goal is always to attract new customers, retain existing customers and obtain those all important client references. Business Intelligence for CRM  is crucial to business success. Your competitors have already embraced metrics and KPI for customer relationship management to provide objective metrics and understand what tasks an...